Special functions over finite Chevalley groups
Xuantong Qu (Nottingham University)
Abstract: Many special functions appearing in the study of integrable systems have their finite field counterparts with extensive connections with number theory and algebraic geometry. For instance, it is well known that Gauss sums are finite field analogues of Gamma-functions and Kloosterman sums are finite field analogues of Bessel functions. In this talk I will present a new approach of studying certain special functions over finite fields using representation theory of finite Chevalley groups. Namely, I will first define finite field analogues of Gamma-functions and Whittaker functions and then identify them as matrix elements of representations of (subgroups of) general linear groups over a finite field and compare them with their counterparts defined over real groups.
mathematical physicsdynamical systemsquantum algebrarepresentation theorysymplectic geometry
Audience: general audience
BIMSA Integrable Systems Seminar
Series comments: The aim is to bring together experts in integrable systems and related areas of theoretical and mathematical physics and mathematics. There will be research presentations and overview talks.
Audience: Graduate students and researchers interested in integrable systems and related mathematical structures, such as symplectic and Poisson geometry and representation theory.
The zoom link will be distributed by mail, so please join the mailing list if you are interested in attending the seminar.
| Organizers: | NiŃolai Reshetikhin, Andrii Liashyk, Ivan Sechin, Andrey Tsiganov* |
| *contact for this listing |
